Regulation of osmotic stress-responsive gene expression by the LOS6/ABA1 locus in Arabidopsis.
نویسندگان
چکیده
Drought and high salinity induce the expression of many plant genes. To understand the signal transduction mechanisms underlying the activation of these genes, we carried out a genetic screen to isolate Arabidopsis mutants defective in osmotic stress-regulated gene induction. Here we report the isolation, characterization, and cloning of a mutation, los6, which diminished osmotic stress activation of a reporter gene. RNA blot analysis indicates that under osmotic stress the transcript levels for stress-responsive genes such as RD29A, COR15A, KIN1, COR47, RD19, and ADH are lower in los6 plants than in wild type plants. los6 plants were found to have reduced phytohormone abscisic acid (ABA) accumulation and to be allelic to the ABA-deficient mutant, aba1. LOS6/ABA1 encodes a zeaxanthin epoxidase that functions in ABA biosynthesis. Its expression is enhanced by osmotic stress. Furthermore, we found that there exists a positive feedback regulation by ABA on the expression of LOS6/ABA1, which may underscore a quick adaptation strategy for plants under osmotic stress. Similar positive regulation by ABA also exists for other ABA biosynthesis genes AAO3 and LOS5/ABA3 and in certain genetic backgrounds, NCED3. This feedback regulation by ABA is impaired in the ABA-insensitive mutant abi1 but not in abi2. Moreover, the up-regulation of LOS6/ABA1, LOS5/ABA3, AAO3, and NCED3 by osmotic stress is reduced substantially in ABA-deficient mutants. Transgenic plants overexpressing LOS6/ABA1 showed an increased RD29A-LUC expression under osmotic stress. These results suggest that the level of gene induction by osmotic stress is dependent on the dosage of the zeaxanthin epoxidase enzyme.
منابع مشابه
HOS5-a negative regulator of osmotic stress-induced gene expression in Arabidopsis thaliana.
Osmotic stress activates the expression of many plant genes through ABA-dependent as well as ABA-independent signaling pathways. We report here the characterization of a novel mutant of Arabidopsis thaliana, hos5-1, which exhibits increased expression of the osmotic stress responsive RD29A gene. The expression of several other stress genes are also enhanced by the hos5-1 mutation. The enhanced ...
متن کاملThe Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression.
To understand low temperature and osmotic stress signaling in plants, we isolated and characterized two allelic Arabidopsis mutants, los5-1 and los5-2, which are impaired in gene induction by cold and osmotic stresses. Expression of RD29A-LUC (the firefly luciferase reporter gene under the control of the stress-responsive RD29A promoter) in response to cold and salt/drought is reduced in the lo...
متن کاملMonitoring Response of a Few bZip Transcription Factors in Response to Osmotic Stress in Sunflower
Background: Sunflower (Helianthus annuus L.) is one of the important vegetable oil supplies in the world and in Iran, as well. It is classified as a drought semi-tolerant crop; however, its yield is adversely affected by drought stress. Understanding the initial events in sensing stress and the related physiologic and biochemical events thereafter, is crucial in designing droug...
متن کاملIdentification and Expression Analysis of Two Arabidopsis LRR-Protein Encoding Genes Responsive to Some Abiotic Stresses
AbstractTwo Arabidopsis thaliana genes, psr9.2 and psr9.4 appearedto be highly similar to a phosphate-starved induced gene,psr9, isolated from Brassica nigra suspension cells.Sequence analysis classified the encoded polypeptides asmembers of leucine-rich repeat (LRR) proteins superfamily.The sequence of psr9 proteins comprise a unique N-terminalregion e...
متن کاملDifferential expression of BnSRK2D gene in two Brassica napus cultivars under water deficit stress
The sucrose non-fermenting 1-related protein kinase 2 (SnRK2) family members are plant unique serine/threonine kinases which play a key role in cellular signaling in response to abiotic stresses. The three SnRK2 members including SRK2D, SRK2I and SRK2E are known to phosphorylate major abscisic acid (ABA) responsive transcription factors, ABF2 and ABF4, involved in an ABA-dependent stress signal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 277 10 شماره
صفحات -
تاریخ انتشار 2002